4. Symmetrical and Unsymmetrical Bending

- 4.1 Internal Forces in Beams
- 4.2 Simple Formula for Normal Stresses Due to Pure (or Transverse) Bending
- 4.3 Unsymmetric Bending of Straight Beams
- 4.4 Case of Combined Normal Force and Bending Moments
 - Assumption of Plane Cross Section Remaining Plane
- 4.5 Calculation of Displacements
 - Case of Transverse Bending

Internal Forces in Beams

Forces Associated with Normal Stresses

Normal (or axial) force N
Bending moment (plane yz) M_x

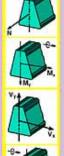
Bending moment (plane xz) M_V

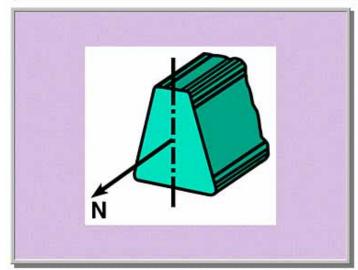
Forces Associated with Shear Stresses

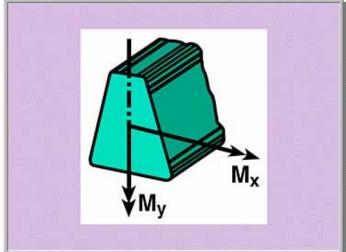
Shearing force

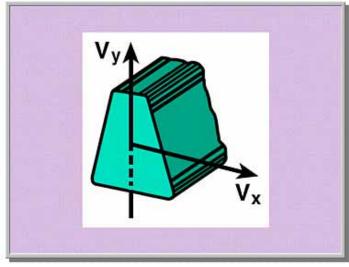
Shearing force Vy

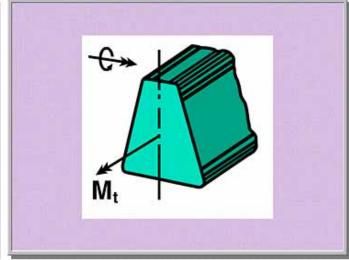
Twisting moment (plane xy) Mt











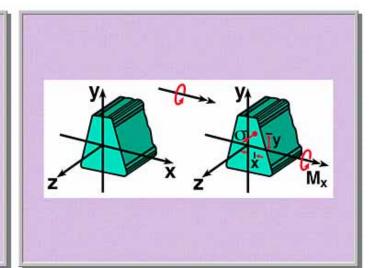
Simple Formula for Normal Stresses Due to Pure (or Transverse) Bending

$$\sigma = \frac{M_x y}{I_y}$$

Assumptions

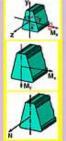
- · Plane of loads (and of bending) is perpendicular to neutral axis
- · x axis is the neutral axis and is a principal centroidal axis

$$S_x = \int y \, dA = 0$$
, $I_{xy} = \int xy \, dA = 0$



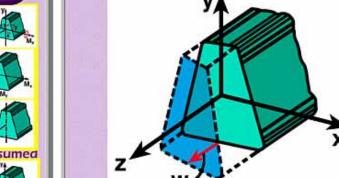
Simple Formula for Normal Stresses Due to Pure (or Transverse) Bending

- · Normal force N
- · Bending moments Mx and My about the x and y axes



Kinematic Relations

 Plane cross section before deformation is as to remain plane after deformation



Simple Formula for Normal Stresses Due to Pure (or Transverse) Bending

Kinematic Relations

- · Plane cross section before deformation is assumed to remain plane after deformation
- · Both the displacement w in the axial direction and the strain & are linear functions of x and y

$$\varepsilon = \frac{\partial w}{\partial z} = \begin{bmatrix} 1 & x & y \end{bmatrix} \begin{Bmatrix} a \\ b \\ c \end{Bmatrix}$$

a, b, c are independent of x and y

Simple Formula for Normal Stresses Due to Pure (or Transverse) Bending

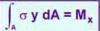
Static Relations

· Sum of internal stresses in the axial direction

$$\int_{A} \sigma \, dA = N$$

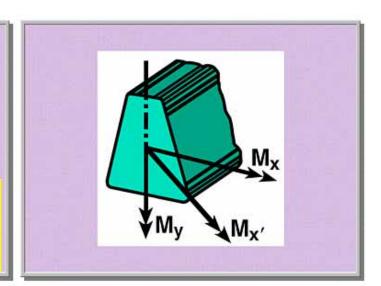
· Sum of moments of internal stresses about y axis

 Sum of moments of internal stresses about x axis



Unsymmetric Bending of Straight Beams

- When the plane of bending is not a principal plane, then
 - Either use a more general formula for the normal stresses (resulting from a bending moment M_{x'}), or
 - Decompose the bending moment into components whose vector representations are along principal centroidal axes



Case of Combined Normal Force and Bending Moments

Constitutive Relations

· For linearly elastic material - uniaxial stress state

$$σ = E ε$$

$$= E [1 x y] {a b c}$$

· From the static relations

$$E\begin{bmatrix} A & S_y & S_x \\ S_y & I_y & I_{xy} \\ S_x & I_{xy} & I_x \end{bmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} N \\ M_y \\ M_x \end{pmatrix}$$

Case of Combined Normal Force and Bending Moments

· From the static relations

$$E \left[\begin{array}{ccc} A & S_y & S_x \\ S_y & I_y & I_{xy} \\ S_x & I_{xy} & I_x \end{array} \right] \left\{ \begin{array}{c} a \\ b \\ c \end{array} \right\} = \left\{ \begin{array}{c} N \\ M_y \\ M_x \end{array} \right\}$$

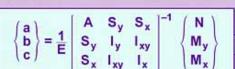
where

$$\begin{pmatrix} A \\ S_x \\ S_y \end{pmatrix} = \int_A \begin{pmatrix} 1 \\ y \\ x \end{pmatrix} dA ; \begin{pmatrix} I_x \\ I_y \\ I_{xy} \end{pmatrix} = \int_A \begin{pmatrix} y^2 \\ x^2 \\ xy \end{pmatrix} dA$$

Case of Combined Normal Force and Bending Moments

where

or

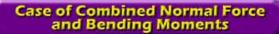


Case of Combined Normal Force and Bending Moments

$$\left\{
\begin{array}{l}
a \\
b \\
c
\end{array}
\right\} = \frac{1}{E} \left[
\begin{array}{cccc}
A & S_y & S_x \\
S_y & I_y & I_{xy} \\
S_x & I_{xy} & I_x
\end{array}
\right]^{-1} \left\{
\begin{array}{c}
N \\
M_y \\
M_x
\end{array}
\right\}$$

 The general formula for normal stresses in terms of the normal force and bending moments:

$$\sigma = \begin{bmatrix} 1 & x & y \end{bmatrix} \begin{bmatrix} A & S_y & S_x \\ S_y & I_y & I_{xy} \\ S_x & I_{xy} & I_x \end{bmatrix}^{-1} \begin{bmatrix} N \\ M_y \\ M_x \end{bmatrix}$$



Simplifications

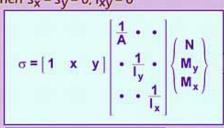
If x and y are centroidal axes, then
 S_X = S_y = 0

$$\sigma = \begin{bmatrix} 1 & x & y \end{bmatrix} \begin{bmatrix} A & 0 & 0 \\ 0 & I_{y} & I_{xy} \\ 0 & I_{xy} & I_{x} \end{bmatrix}^{-1} \begin{bmatrix} N \\ M_{y} \\ M_{x} \end{bmatrix}$$

 If x and y are centroidal principal axes, then S_X = S_V = 0, I_{XV} = 0

Case of Combined Normal Force and Bending Moments

 If x and y are centroidal principal axes, then S_X = S_V = 0, I_{XV} = 0



$$\sigma = \frac{N}{A} + \frac{M_y}{I_y} x + \frac{M_x}{I_x} y$$

Case of Combined Normal Force and Bending Moments

$$\sigma = \frac{N}{A} + \frac{M_y}{I_y} x + \frac{M_x}{I_y} y$$

Neutral Axis

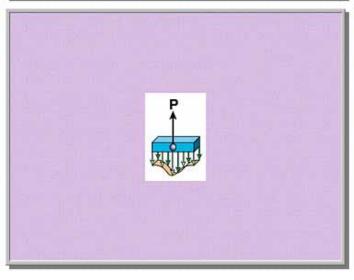
Is the axis at which the normal stress $\sigma = 0$

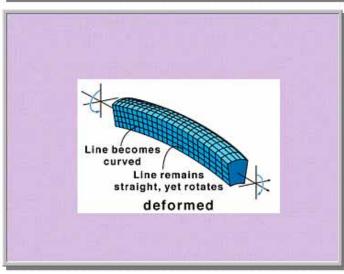
Case of Combined Normal Force and Bending Moments

- Assumption of plane cross section before deformation remains plane
 - Is accurate for:
 - axial load (away from point of application of load)
 - pure bending
 - Is approximate for transverse bending
- Assumption of undeformable cross sections

$$\varepsilon_{x} = \varepsilon_{y} = \gamma_{xy} = 0$$

- Only approximate for bending





Case of Combined Normal Force and Bending Moments

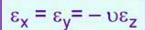
Assumption of undeformable cross sections

 $\varepsilon_{x} = \varepsilon_{y} = \gamma_{xy} = 0$

- Only approximate for bending

$$\left(\varepsilon_{x}, \varepsilon_{y}, \gamma_{xy}\right) < < \varepsilon_{z}$$

 More approximate than for beams under axial loading



Calculations of Displacements

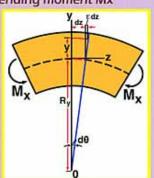
Rotation, Curvature and Axial Strain

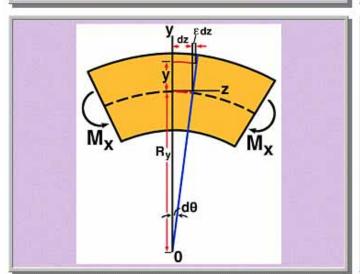
For the case of a single bending moment Mx

$$d\theta = \frac{dz}{R_y} = \frac{\varepsilon dz}{y}$$

$$\frac{1}{R_y} = \frac{d\theta}{dz} = \frac{\varepsilon}{y}$$

$$\approx -\frac{d^2v}{dz^2}$$
or
$$\varepsilon \approx -y \frac{d^2v}{dz^2}$$



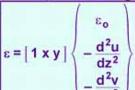


Calculations of Displacements

· Analogously, for a bending moment My

$$\varepsilon \simeq - x \, \frac{d^2 u}{dz^2}$$

- And, for an axial force N ε = ε₀
- For the case of combined axial force, bending moment M_x and bending moment M_y



Calculations of Displacements

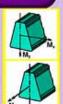
Displacement equations from which

$$\varepsilon = \frac{dw}{dz} = \frac{\sigma}{E}$$

$$\begin{pmatrix}
\epsilon_{o} \\
-\frac{d^{2}u}{dz^{2}} \\
-\frac{d^{2}v}{dz^{2}}
\end{pmatrix} = \frac{1}{E} \begin{vmatrix}
A & S_{y} & S_{x} \\
S_{y} & I_{y} & I_{xy} \\
S_{x} & I_{xy} & I_{x}
\end{vmatrix}^{-1} \begin{pmatrix}
N \\
M_{y} \\
M_{x}
\end{pmatrix}$$

Calculations of Displacements

$$\begin{cases}
-\frac{d^2u}{dz^2} \\
-\frac{d^2v}{dz^2}
\end{cases} = \frac{1}{E} \begin{bmatrix}
A & S_y & S_x \\
S_y & I_y & I_{xy} \\
S_x & I_{xy} & I_x
\end{bmatrix}^{-1} \begin{pmatrix}
N \\
M_y \\
M_x
\end{pmatrix}$$



Simplifications

· If x and y are centroidal axes, and N is absent, then

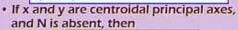
$$\left(\begin{array}{c} \frac{d^2 u}{dz^2} \\ \frac{d^2 v}{dz^2} \end{array} \right) = \frac{-1}{E} \left[\begin{array}{ccc} I_y & I_{xy} \\ I_{xy} & I_x \end{array} \right]^{-1} \left\{ \begin{array}{ccc} M_y \\ M_x \end{array} \right\}$$

Calculations of Displacements

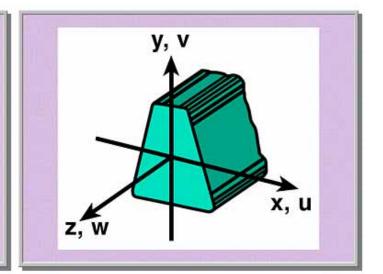
Simplifications

· If x and y are centroidal axes, and N is absent, then

$$\left\{ \begin{array}{l}
\frac{d^2u}{dz^2} \\
\frac{d^2v}{dz^2}
\end{array} \right\} = \frac{-1}{E} \begin{bmatrix} I_y & I_{xy} \\ I_{xy} & I_x \end{bmatrix}^{-1} \begin{Bmatrix} M_y \\ M_x \end{Bmatrix}$$



$$\begin{pmatrix} \frac{d^2u}{dz^2} \\ \frac{d^2v}{dz^2} \end{pmatrix} = \frac{-1}{E} \begin{pmatrix} \frac{M_y}{I_y} \\ \frac{M_x}{I_x} \end{pmatrix}$$



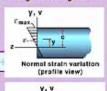
Calculations of Displacements

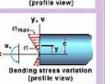
Case of Transverse Bending

 Governing equation for the elementary theory of beams:

$$\frac{d^2}{dz^2} \left(EI_x \frac{d^2v}{dz^2} \right) = p_y$$

- For uniform beams





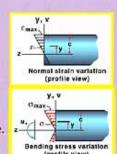
Calculations of Displacements

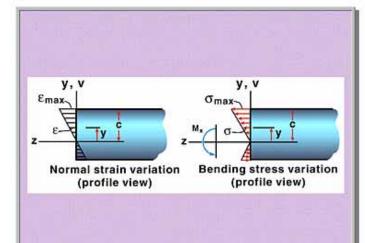
Case of Transverse Bending

- For uniform beams

$$EI\frac{d^4v}{dz^4} = p$$

where subscripts x and y have been dropped for convenience.





Calculations of Displacements

Case of Transverse Bending

Successive integration of the differential equation

Transverse shear

$$EI\frac{d^3v}{dz^3} = \int_0^z p \, dz + c_1 = -V$$

Calculations of Displacements

Case of Transverse Bending

Bending Moment

$$EI \frac{d^{2}v}{dz^{2}} = \int_{0}^{z} \int_{0}^{z} p \, dz \, dz + c_{1}z + c_{2}$$
$$= -M$$

Calculations of Displacements

Case of Transverse Bending

Slope

EI
$$\frac{dv}{dz} = \int_{0}^{z} \int_{0}^{z} \int_{0}^{z} p \, dz \, dz \, dz$$

+ $\frac{1}{2}c_{1}z^{2} + c_{2}z + c_{3}$

Calculations of Displacements

Case of Transverse Bending

Transverse Displacement

EI
$$v = \int_{0}^{z} \int_{0}^{z} \int_{0}^{z} \int_{0}^{z} p \, dz \, dz \, dz$$

 $+ \frac{1}{6} c_{1} z^{3} + \frac{1}{2} c_{2} z^{2} + c_{3} z + c_{4}$

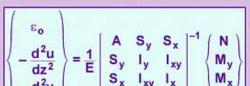
Calculations of Displacements

Case of combined N, Mx, My

$$\sigma = \begin{bmatrix} 1 \times y \end{bmatrix} \begin{bmatrix} A & S_y & S_x \\ S_y & I_x & I_{xy} \\ S_x & I_{xy} & I_x \end{bmatrix}^{-1} \begin{bmatrix} N \\ M_y \\ M_x \end{bmatrix}$$

Calculations of Displacements

· Displacement equations



Calculations of Displacements

· If x,y are centroidal principal axes

$$\frac{dw}{dz} = \frac{N}{EA}$$

$$-\frac{d^2u}{dz^2} = \frac{M_y}{EI_y}$$

$$\frac{d^2u}{dz^2} = \frac{M_y}{EI_y} - \frac{d^2v}{dz^2} =$$

